Publisher
Springer Nature Switzerland
Reference26 articles.
1. Asiain, E., Clempner, J.B., Poznyak, A.S.: A reinforcement learning approach for solving the mean variance customer portfolio for partially observable models. Int. J. Artif. Intell. Tools 27(8), 1850034–1–1850034–30 (2018)
2. Bensoussan, A., Cakanyildirim, M., Sethi, S.P., Shi, R.: Computation of approximate optimal policies in a partially observed inventory model with rain checks. Automatica (2011)
3. Cassandra, A.R., Kaelbling, L.P., Littman, M.L.: Acting optimally in partially observable stochastic domains. In: Proceedings of Twelfth National Conference in Artificial Intelligence, vol. 2, pp. 1023–1028. Menlo Park, C.A., USA (1994)
4. Clempner, J.B.: Necessary and sufficient karush-kuhn-tucker conditions for multiobjective markov chains optimality. Automatica 71, 135–142 (2016)
5. Clempner, J.B.: Revealing perceived individuals’ self-interest. J. Oper. Res. Soc. 1–10 (2023). To be published. https://doi.org/10.1080/01605682.2023.2195878