1. Allamanis, M., Brockschmidt, M., Khademi, M.: Learning to represent programs with graphs. arXiv:1711.00740 [cs], May 2018. https://arxiv.org/abs/1711.00740
2. Anjum, A., Ikram, A., Hill, R., Antonopoulos, N., Liu, L., Sotiriadis, S.: Approaching the internet of things (IoT): a modelling, analysis and abstraction framework. Concurrency Comput.: Pract. Experience 27(8), 1966–1984 (2013)
3. Bronstein, M.: Using subgraphs for more expressive GNNs. Medium, December 2021. https://towardsdatascience.com/using-subgraphs-for-more-expressive-gnns-8d06418d5ab
4. Bronstein, M.: Beyond message passing: a physics-inspired paradigm for graph neural networks. Gradient (2022). https://thegradient.pub/graph-neural-networks-beyond-message-passing-and-weisfeiler-lehman
5. Brown, K., Patterson, E., Hanks, T., Fairbanks, J.P.: Computational category-theoretic rewriting. In: Behr, N., Strüber, D. (eds.) Graph Transformation - 15th International Conference, ICGT 2022, Held as Part of STAF 2022, Nantes, France, July 7–8, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13349, pp. 155–172. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09843-7_9