1. Anagnostopoulos, I., Zeadally, S., & Exposito, E. (2016). Handling big data: Research challenges and future directions. The Journal of Supercomputing, 72(4), 1494–1516.
2. Artner, J., Mazak, A., & Wimmer, M. (2017). Towards stochastic performance models for web 2.0 applications. In J. Cabot, R. D. Virgilio, & R. Torlone (Eds.), Proceedings of the 17th International Conference on Web Engineering (ICWE 2017). Lecture Notes in Computer Science (Vol. 10360, pp. 360–369). Berlin: Springer.
3. Basciani, F., Rocco, J. D., Ruscio, D. D., Salle, A. D., Iovino, L., & Pierantonio, A. (2014). MDEForge: An extensible web-based modeling platform. In Proceedings of the 2nd International Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE) Co-located with the 17th International Conference on Model Driven Engineering Languages and Systems (MoDELS) (pp. 66–75). https://CEUR-WS.org
4. Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., & Launay, D. (2014). Neo4EMF, a scalable persistence layer for EMF models. In J. Cabot & J. Rubin, (Eds.), Proceedings of the 10th European Conference on Modelling Foundations and Applications, ECMFA 2014. Lecture Notes in Computer Science (Vol. 8569, pp. 230–241). Berlin: Springer.
5. Bergmayr, A., Breitenbücher, U., Ferry, N., Rossini, A., Solberg, A., Wimmer, M., et al. (2018). A systematic review of cloud modeling languages. ACM Computing Surveys, 51(1), 22.