Author:
Fiedler Torben,Rösler Joachim,Bäker Martin,Hötte Felix,von Sethe Christoph,Daub Dennis,Haupt Matthias,Haidn Oskar J.,Esser Burkard,Gülhan Ali
Abstract
Abstract
To protect the copper liners of liquid-fuel rocket combustion chambers, a thermal barrier coating can be applied. Previously, a new metallic coating system was developed, consisting of a NiCuCrAl bond-coat and a Rene 80 top-coat, applied with high velocity oxyfuel spray (HVOF). The coatings are tested in laser cycling experiments to develop a detailed failure model, and critical loads for coating failure were defined. In this work, a coating system is designed for a generic engine to demonstrate the benefits of TBCs in rocket engines, and the mechanical loads and possible coating failure are analysed. Finally, the coatings are tested in a hypersonic wind tunnel with surface temperatures of 1350 K and above, where no coating failure was observed. Furthermore, cyclic experiments with a subscale combustion chamber were carried out. With a diffusion heat treatment, no large-scale coating delamination was observed, but the coating cracked vertically due to large cooling-induced stresses. These cracks are inevitable in rocket engines due to the very large thermal-strain differences between hot coating and cooled substrate. It is supposed that the cracks can be tolerated in rocket-engine application.
Publisher
Springer International Publishing
Reference37 articles.
1. Ogbuji, L.: Oxidation of Metals 63(5–6), 383 (2005)
2. Duval, H.: Investigation on blanching on cryogenic engines combustion chamber inner liner. Dissertation Ecole Centrale Paris (2014)
3. Hötte, F., Fiedler, T., Haupt, M.C., Lungu, P., Sethe, C.V., Haidn, O.J.: J. Propul. Power 35(5), 906 (2019)
4. Schulz, U., Fritscher, K., Peters, M., Greuel, D., Haidn, O.: Sci. Technol. Adv. Mater. 6(2), 103 (2005)
5. Fassin, M., Kowollik, D., Wulfinghoff, S., Reese, S., Haupt, M.: Arch. Appl. Mech. 86, 2063 (2016)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献