Author:
Su Peng,Wang Kun,Zeng Xingyu,Tang Shixiang,Chen Dapeng,Qiu Di,Wang Xiaogang
Publisher
Springer International Publishing
Reference47 articles.
1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79, 151–175 (2010). https://doi.org/10.1007/s10994-009-5152-4
2. Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., Krishnan, D.: Unsupervised pixel-level domain adaptation with generative adversarial networks. In: CVPR (2017)
3. Chen, X., et al.: 3D object proposals for accurate object class detection. In: Advances in Neural Information Processing Systems (2015)
4. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: CVPR (2018)
5. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献