A Regressive Convolution Neural Network and Support Vector Regression Model for Electricity Consumption Forecasting
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-12385-7_4
Reference20 articles.
1. Kavousi-Fard, A., Samet, H., Marzbani, F.: A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Syst. Appl. 41(13), 6047–6056 (2014)
2. Ding, S., Hipel, K.W., Dang, Y.: Forecasting China’s electricity consumption using a new grey prediction model. Energy 149, 314–328 (2018)
3. Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F.: Forecasting electricity consumption: a comparison of regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy Syst. 67, 431–438 (2015)
4. Zhang, Y., Guo, L., Li, Q., Li, J.: Electricity consumption forecasting method based on MPSO-BP neural network model. In: Proceedings of the 2016 4th International Conference on Electrical & Electronics Engineering and Computer Science (ICEEECS 2016), vol. 50, pp. 674–678 (2016)
5. Akay, D., Atak, M.: Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 32(9), 1670–1675 (2007)
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Empowering Sustainability: A Consumer-Centric Analysis Based on Advanced Electricity Consumption Predictions;Sustainability;2024-04-02
2. Forecasting of residential unit’s heat demands: a comparison of machine learning techniques in a real-world case study;Energy Systems;2023-05-09
3. Identifying Improvement Opportunities in Product Design for Reducing Energy Consumption;Energies;2022-12-18
4. A comparison between multivariate adaptive regression splines and regressive convolution neural network with support vector regression for pipe burst rate prediction on limited dataset;Urban Water Journal;2022-07-29
5. SCORN: Sinter Composition Optimization with Regressive Convolutional Neural Network;Solids;2022-07-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3