1. Arnold, S., Yesilbas, D.: Demystifying the effects of non-independence in federated learning. arXiv preprint arXiv:2103.11226 (2021)
2. Bagdasaryan, E., Veit, A., Hua, Y., Estrin, D., Shmatikov, V.: How to backdoor federated learning. In: International Conference on Artificial Intelligence and Statistics, pp. 2938–2948. PMLR (2020)
3. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning be secure? In: ACM Symposium on Information Computer and Communication security (2006)
4. Barreno, M., Nelson, B., Joseph, A.D., Tygar, J.D.: The security of machine learning. Mach. Learn. 81(2), 121–148 (2010). https://doi.org/10.1007/s10994-010-5188-5
5. Baruch, G., Baruch, M., Goldberg, Y.: A little is enough: circumventing defenses for distributed learning. Adv. Neural Inf. Process. Syst. 32, 8635–8645 (2019)