1. Arasteh, S.T., Weise, T., Schuster, M., et al.: The effect of speech pathology on automatic speaker verification-a large-scale study. arXiv preprint arXiv:2204.06450 (2022)
2. Baevski, A., et al.: wav2vec 2.0: a framework for self-supervised learning of speech representations. In: Advances in Neural Information Processing Systems, vol. 33, pp. 12449–12460 (2020)
3. Baumann, I., Wagner, D., Braun, F., et al.: The importance of speech stimuli for pathologic speech classification. arXiv preprint arXiv:2210.15941 (2022)
4. Bayerl, S.P., Wagner, D., Nöth, E., Riedhammer, K.: Detecting dysfluencies in stuttering therapy using wav2vec 2.0. arXiv preprint arXiv:2204.03417 (2022)
5. Bhattacharyya, N.: The prevalence of voice problems among adults in the United States. Laryngoscope 124(10), 2359–2362 (2014)