Author:
Koloydenko Alexey A.,Notingher Ioan,Boitor Radu,Lember Jüri
Publisher
Springer Nature Switzerland
Reference10 articles.
1. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(85), 2399–2434 (2006). http://jmlr.org/papers/v7/belkin06a.html
2. Boitor, R., et al.: Diagnostic accuracy of auto-fluorescence-Raman spectroscopy for surgical margin assessment during Mohs micrographic surgery of basal cell carcinoma. Br. J. Dermatol. 5, ljae196 (2024). https://doi.org/10.1093/bjd/ljae196
3. Boitor, R., et al.: Ex vivo assessment of basal cell carcinoma surgical margins in Mohs surgery by autofluorescence-Raman spectroscopy: a pilot study. JEADV Clin. Pract. 3(2), 498–507 (2023). https://doi.org/10.1002/jvc2.336
4. Calissano, A., Feragen, A., Vantini, S.: Populations of unlabelled networks: graph space geometry and generalized geodesic principal components. Biometrika 111(1), 147–170 (2023). https://doi.org/10.1093/biomet/asad024
5. Crawford, L., Anthea Monod, A., Andrew, X., Chen, A.X., Mukherjee, S., Rabadán, R.: Predicting clinical outcomes in glioblastoma: an application of topological and functional data analysis. J. Am. Stat. Assoc. 115(531), 1139–1150 (2020). https://doi.org/10.1080/01621459.2019.1671198