Author:
Quihui-Rubio Pablo Cesar,Flores-Araiza Daniel,Gonzalez-Mendoza Miguel,Mata Christian,Ochoa-Ruiz Gilberto
Publisher
Springer Nature Switzerland
Reference18 articles.
1. Aldoj, N., Biavati, F., Michallek, F., Stober, S., Dewey, M.: Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net. Sci. Rep. 10 (2020). https://doi.org/10.1038/s41598-020-71080-0
2. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on U-net (R2U-net) for medical image segmentation. CoRR abs/1802.06955 (2018)
3. AstraZeneca: A personalized approach in prostate cancer (2020). https://www.astrazeneca.com/our-therapy-areas/oncology/prostate-cancer.html. Accessed 17 Oct 2021
4. Lecture Notes in Computer Science;H Cao,2023
5. Chen, M., et al.: Prostate cancer detection: comparison of T2-weighted imaging, diffusion-weighted imaging, proton magnetic resonance spectroscopic imaging, and the three techniques combined. Acta Radiologica 49(5), 602–610 (2008). https://doi.org/10.1080/02841850802004983. https://www.tandfonline.com/doi/abs/10.1080/02841850802004983