1. Ajanthan, T., Gupta, K., Torr, P.H., Hartley, R., Dokania, P.K.: Mirror descent view for neural network quantization. arXiv preprint arXiv:1910.08237 (2019)
2. Alizadeh, M., Fernandez-Marques, J., Lane, N.D., Gal, Y.: An empirical study of binary neural networks’ optimisation. In: ICLR (2019)
3. Azizan, N., Lale, S., Hassibi, B.: A study of generalization of stochastic mirror descent algorithms on overparameterized nonlinear models. In: ICASSP, pp. 3132–3136 (2020)
4. Bai, Y., Wang, Y.-X., Liberty, E.: ProxQuant: quantized neural networks via proximal operators. In: ICLR (2019)
5. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432 (2013)