1. Abbasi, M., Bhaskara, A., Venkatasubramanian, S.: Fair clustering via equitable group representations. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 504–514. ACM, New York (2021)
2. Ahmadian, S., et al.: Fair hierarchical clustering. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21050–21060 (2020)
3. Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Clustering without over-representation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 267–275. ACM, New York (2019)
4. Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., Wagner, T.: Scalable fair clustering. In: International Conference on Machine Learning, pp. 405–413. PMLR, Long Beach (2019)
5. Bandyapadhyay, S., Fomin, F.V., Simonov, K.: On coresets for fair clustering in metric and Euclidean spaces and their applications (2020). arXiv:2007.10137