1. Chandrasekaran, V., Jia, H., Thudi, A., et al.: SoK: Machine Learning Governance (2021). http://arxiv.org/abs/2109.10870
2. Desai, H.B., Ozdayi, M.S., Kantarcioglu, M.: BlockFLA: accountable federated learning via hybrid blockchain architecture. In: Proceedings of the Eleventh ACM Conference on Data and Application Security and Privacy (CODASPY’21), pp. 101–112. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3422337.3447837
3. Galtier, M.N., Marini, C.: Substra: a framework for privacy-preserving, traceable and collaborative Machine Learning (2019). https://arxiv.org/abs/1910.11567
4. Hard, A., Rao, K., Mathews, R., et al.: Federated learning for mobile keyboard prediction (2018). http://arxiv.org/abs/1811.03604
5. Janssen, M., Brous, P., Estevez, E., et al.: Data governance: organizing data for trustworthy artificial intelligence. GIQ 37(3), 101493 (2020)