1. Albertini, F., Sontag, E.: For neural networks, function determines form. Neural Netw. 6(7), 975–990 (1993)
2. Anguita, D., Ghio, A., Oneto, L., Ridella, S.: Selecting the hypothesis space for improving the generalization ability of support vector machines. In: IEEE International Joint Conference on Neural Networks (2011)
3. Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math. J. 19, 357–367 (1967)
4. Ba, L.J., Caruana, R.: Do deep networks really need to be deep? In: Ghahramani, Z. et al. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 1–9 (2014)
5. Ball, K.: An elementary introduction to modern convex geometry. In: Levy, S. (ed.) Flavors of Geometry, pp. 1–58. Cambridge University Press, Cambridge (1997)