1. Adebayo, J., Kagal, L.: Iterative orthogonal feature projection for diagnosing bias in black-box models. In: Fairness, Accountability, and Transparency in Machine Learning (2016)
2. Adler, P., Falk, C., Friedler, S.A., Nix, T., Rybeck, G., Scheidegger, C., Smith, B., Venkatasubramanian, S.: Auditing black-box models for indirect influence. Knowl. Inf. Syst. 54(1), 95–122 (2018)
3. Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., Wallach, H.: A reductions approach to fair classification. In: Proceedings of the 35th International Conference on Machine Learning, pp. 60–69 (2018)
4. AI Now Institute: Litigating algorithms: challenging government use of algorithmic decision systems (2016).
https://ainowinstitute.org/litigatingalgorithms.pdf
5. Alabi, D., Immorlica, N., Kalai, A.T.: Unleashing linear optimizers for group-fair learning and optimization. In: 31st Annual Conference on Learning Theory, pp. 2043–2066 (2018)