Author:
Bessa Renan,Barreto Guilherme A.
Publisher
Springer International Publishing
Reference14 articles.
1. Atiya, A.F., Parlos, A.G.: New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11(3), 697–709 (2000)
2. Chan, S.C., Zou, Y.X.: A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise: fast algorithm and convergence performance analysis. IEEE Trans. Sign. Process. 52(4), 975–991 (2004)
3. Chatzis, S.P., Demiris, Y.: Echo state Gaussian process. IEEE Trans. Neural Netw. 22(9), 1435–1445 (2011)
4. De Moor, B.L.R.: Daisy: database for the identification of systems. Department of Electrical Engineering, ESAT/SISTA, K.U.Leuven, Belgium.
http://www.esat.kuleuven.ac.be/sista/daisy/
. Accessed 15 Jan 2019. Used dataset: Dryer: (96–006); Exchanger (97–002); Robot arm (96–009)
5. Guo, Y., Wang, F., Chen, B., Xin, J.: Robust echo state networks based on correntropy induced loss function. Neurocomputing 267, 295–303 (2017)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Nonlinear MIMO System Identification with Echo-State Networks;Journal of Control, Automation and Electrical Systems;2022-01-03