Recommender Systems and Discrimination

Author:

Gössl Susanne Lilian

Abstract

AbstractThe following article deals with the topic of discrimination “by” a recommender system. Several reasons can create discriminating recommendations, especially the lack of diversity in training data, bias in training data or errors in the underlying modelling algorithm. The legal frame is still not sufficient to nudge developers or users to effectively avoid those discriminations, especially data protection law as enshrined in the EU General Data Protection Regulation (GDPR) is not feasible to fight discrimination. The same applies for the EU Unfair Competition Law, that at least contains first considerations to allow an autonomous decision of the subjects involved to know about possible forms of discrimination. Furthermore, with the Digital Service Act (DSA) and the AI Act (AIA) there are first steps into a direction that can inter alia tackle the problem. Most effectively seems a combination of regular monitoring and audit obligations and the development of an information model, supported by information by legal design, that allows an autonomous decision of all individuals using a recommender system.

Publisher

Springer International Publishing

Reference69 articles.

1. Act on Equal Treatment (Allgemeines Gleichbehandlungsgesetz – AGG). 2006. Available online: https://www.gesetze-im-internet.de/agg/index.html. Accessed on 06.09.2022.

2. Ali, Muhammad, Sapiezynski, Piotr, Bogen, Miranda, Korolova, Aleksandra, Mislove, Alan, and Rieke, Aaron. 2019. Discrimination Through Optimization. In Proceedings of the ACM on Human-Computer Interaction 3, CSCW 2019, 1–30.

3. Allhutter, Doris, Mager, Astrid, Cech, Florian, Fischer, Fabian, and Grill, Gabrial. 2020. Der AMS-Algorithmus: Eine Soziotechnische Analyse Des Arbeitsmarktchancen-Assistenz-Systems (AMAS). ITA-Projektbericht Nr.: 2020-02 2020.

4. Alpaydın, Ethem. 2016. Machine Learning: The New AI. The MIT Press Essential Knowledge Series. Cambridge, MA/London: MIT Press.

5. Angwin, Julia, Larson, Jeff, Mattu, Surya, and Lauren Kirchner. 2016. Machine Bias. ProPublica, May 23, Available online: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing. Accessed on 07.09.2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3