1. A. Tamaševičius, S. Bumelienė, R. Kirvaitis, G. Mykolaitis, E. Tamaševičiūtė, E. Lindberg, Autonomous Duffing-Holmes type chaotic oscillator. Elektronika ir Elektrotechnika. 5(93), 43–46 (2009). https://www.eejournal.ktu.lt/index.php/elt/article/download/10178/5036
2. Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, Application of attractor selection to adaptive virtual network topology control, in Proceedings of BIONETICS (2008), pp. 1–8
3. L.-Z. Wang, R.-Q. Su, Z.-G. Huang, X. Wang, W.-X. Wang, C. Grebogi, Y.-C. Lai, A geometrical approach to control and controllability of nonlinear dynamical networks. Nat. Commun. 7, 11323 (2016). https://doi.org/10.1038/ncomms11323
4. O.E. Rössler, Chaotic oscillations: an example of hyperchaos, in Nonlinear Oscillations in Biology. Lectures in Applied Mathematics, vol. 17 (AMS, Providence, 1979)
5. P. Holmes, A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. Lond. A: Math. Phys. Sci. 292, 419–448 (1979). https://royalsocietypublishing.org/doi/10.1098/rsta.1979.0068