1. Balas, V.E., Roy, S.S., Sharma, D., Samui, P.: Handbook of Deep Learning Applications, vol. 136. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-11479-4
2. Balunović, M., Vechev, M.: Adversarial training and provable defenses: bridging the gap. In: International Conference on Learning Representations (2020)
3. Brent, R.P.: Algorithms for Minimization Without Derivatives. Prentice Hall, Englewood Cliffs (1973)
4. Carlini, N., et al.: On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705 (2019)
5. Carlini, N., Tramer, F., Dvijotham, K.D., Rice, L., Sun, M., Kolter, J.Z.: (Certified!!) adversarial robustness for free! In: International Conference on Learning Representations (2023)