1. Agarwal, C., Lakkaraju, H., Zitnik, M.: Towards a unified framework for fair and stable graph representation learning. In: Uncertainty in Artificial Intelligence, pp. 2114–2124. PMLR (2021)
2. Barocas, S., Hardt, M., Narayanan, A.: Fairness and Machine Learning. fairmlbook.org (2019). http://www.fairmlbook.org
3. Berk, R., Heidari, H., Jabbari, S., Kearns, M., Roth, A.: Fairness in criminal justice risk assessments: the state of the art. Sociol. Methods Res. 50(1), 3–44 (2021)
4. Caton, S., Haas, C.: Fairness in machine learning: a survey (2020). arXiv preprint arXiv:2010.04053
5. Chen, W., et al.: CatGCN: graph convolutional networks with categorical node features. IEEE Trans. Knowl. Data Eng. (2021)