Identifying Limitations when Deriving Probabilistic Views of North Atlantic Hurricane Hazard from Counterfactual Ensemble NWP Re-forecasts

Author:

Philp Tom J.,Champion Adrian J.,Hodges Kevin I.,Pigott Catherine,MacFarlane Andrew,Wragg George,Zhao Steve

Abstract

AbstractDownward counterfactual analysis – or quantitatively estimating how our observed history could have been worse – is increasingly being used by the re/insurance industry to identify, quantify, and mitigate against as-yet-unrealised “grey-swan” catastrophic events. While useful for informing site-specific adaptation strategies, the extraction of probabilistic information remains intangible from such downside-only focused analytics. We hypothesise that combined upward and downward counterfactual analysis (i.e., how history could have been either better or worse) may allow us to obtain probabilistic information from counterfactual research if it can be applied objectively and without bias.Here we test this concept of objective counterfactual analysis by investigating how initial-condition-driven track variability of events in our North Atlantic Hurricane (NAHU) record may affect present-day probabilistic views of US landfall risk. To do this, we create 10,000 counterfactual NAHU histories from NCEP GEFS v2 initial-condition ensemble reforecast data for the period 1985-2016 and compare the statistics of these counterfactual histories to a model-based version of our single observational history.While the methodology presented herein attempts to produce the histories as objectively as possible, there is clear – and, ultimately, intuitively understandable – systematic underprediction of US NAHU landfall frequency in the counterfactual histories. This limits the ability to use the data in real-world applications at present. However, even with this systematic under-prediction, it is interesting to note both the magnitude of volatility and spatial variability in hurricane landfalls in single cities and wider regions along the US coastline, which speaks to the potential value of objective counterfactual analysis once methods have evolved.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3