Author:
Nakrošis Arnas,Lagzdinytė-Budnikė Ingrida,Paulauskaitė-Tarasevičienė Agnė,Paulikas Giedrius,Dapkus Paulius
Publisher
Springer International Publishing
Reference37 articles.
1. Malware Statistics & Trends Report | AV-TEST. https://www.av-test.org/en/statistics/malware/. Accessed 24 Feb 2022
2. Mahler, T., et al.: Know your enemy: characteristics of cyber-attacks on medical imaging devices. ArXiv180105583 Cs, February 2018. http://arxiv.org/abs/1801.05583. Accessed 24 Feb 2022
3. Samra, A.A.A., Qunoo, H.N., Al-Rubaie, F., El-Talli, H.: A survey of static android malware detection techniques. In: 2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE), pp. 1–6, March 2019. https://doi.org/10.1109/PICECE.2019.8747224
4. Sayadi, H., et al.: Towards accurate run-time hardware-assisted stealthy malware detection: a lightweight, yet effective time series CNN-based approach. Cryptography 5(4), Art. no. 4 (2021). https://doi.org/10.3390/cryptography5040028
5. Patil, S., et al.: Improving the robustness of AI-based malware detection using adversarial machine learning. Algorithms 14(10), Art. no. 10 (2021). https://doi.org/10.3390/a14100297