A Deterministic Model to Predict Execution Time of Spark Applications
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-25049-1_11
Reference12 articles.
1. Amannejad, Y., Shah, S., Krishnamurthy, D., Wang, M.: Fast and lightweight execution time predictions for spark applications. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pp. 493–495 (2019)
2. Ardagna, D., et al.: Performance prediction of cloud-based big data applications. In: 2018 ACM/SPEC 9th International Conference on Performance Engineering (ICPE), pp. 192–199 (2018)
3. Ardagna, D., et al.: Predicting the performance of big data applications on the cloud. J. Supercomput. 77, 1321–1353 (2021)
4. Asaadi, H., Khaldi, D., Chapman, B.: A comparative survey of the HPC and big data paradigms: Analysis and experiments. In: 2016 IEEE International Conference on Cluster Computing (CLUSTER), pp. 423–432 (2016)
5. Didona, D., Quaglia, F., Romano, P., Torre, E.: Enhancing performance prediction robustness by combining analytical modeling and machine learning. In: 2015 ACM/SPEC 6th International Conference on Performance Engineering (ICPE), pp. 145–156 (2015)
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Execution Time Prediction Model that Considers Dynamic Allocation of Spark Executors;Computer Performance Engineering and Stochastic Modelling;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3