1. Hartnett, K.: Q&A with Judea Pearl: to build truly intelligent machines, teach them cause and effect. (https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/. Accessed 30 May 2020
2. Kanatani, K., Sugaya, Y., Kanazawa, Y.: Ellipse fitting for computer vision: implementation and applications. Synth. Lect. Comput. Vis. 6(1), 1–141 (2016)
3. Chin, T.J., Suter, D.: The maximum consensus problem: recent algorithmic advances. Synth. Lect. Comput. Vis. 7(2), 1–194 (2017)
4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)
5. Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2022–2038 (2013)