Author:
Brändle Sebastian,Hanussek Marc,Blohm Matthias,Kintz Maximilien
Publisher
Springer International Publishing
Reference22 articles.
1. Aggarwal, C.C.: Machine Learning for Text, 1st edn. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73531-3
2. Almeida, T.A., Hidalgo, J.M.G., Yamakami, A.: Contributions to the study of SMS spam filtering: new collection and results. In: Proceedings of the 11th ACM Symposium on Document Engineering, DocEng 2011. Association for Computing Machinery, New York, pp. 259–262 (2011)
3. Blohm, M., Hanussek, M., Kintz, M.: Leveraging automated machine learning for text classification: Evaluation of autoML tools and comparison with human performance. In: Proceedings of the 13th International Conference on Agents and Artificial Intelligence, ICAART 2021, Online Streaming, 4–6 February 2021, vol. 2, pp. 1131–1136. SCITEPRESS (2021)
4. Chakraborty, R., Elhence, A., Arora, K.: Sparse victory - a large scale systematic comparison of count-based and prediction-based vectorizers for text classification. In: Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019), pp. 188–197. INCOMA Ltd, Varna, September 2019
5. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, June 2019