Author:
Eklund David,Iacovazzi Alfonso,Wang Han,Pyrgelis Apostolos,Raza Shahid
Publisher
Springer Nature Switzerland
Reference62 articles.
1. Akavia, A., Galili, B., Shaul, H., Weiss, M., Yakhini, Z.: Privacy preserving feature selection for sparse linear regression. Cryptology ePrint Archive, Paper 2023/1354 (2023). https://eprint.iacr.org/2023/1354
2. Alishahi, M., Moghtadaiee, V.: Feature selection on anonymized datasets. In: IEEE International Conference on Dependable, Autonomic and Secure Computing (DASC) (2023)
3. Alishahi, M., Moghtadaiee, V., Navidan, H.: Add noise to remove noise: local differential privacy for feature selection. Comput. Secur. (2022)
4. Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al.: Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans. Inf. Forensics Secur. (2017)
5. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Proceedings of the 2016 ACM Conference on Computer and Communications Security (2016)