1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016, pp. 308–318. ACM (2016)
2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
3. Du, M., Jia, R., Song, D.: Robust anomaly detection and backdoor attack detection via differential privacy. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020)
4. Gao, K., Bai, Y., Gu, J., Yang, Y., Xia, S.: Backdoor defense via adaptively splitting poisoned dataset. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, 17–24 June 2023, pp. 4005–4014. IEEE (2023)
5. Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: identifying vulnerabilities in the machine learning model supply chain. CoRR abs/1708.06733 (2017). http://arxiv.org/abs/1708.06733