1. Amidei, J., Piwek, P., Willis, A.: Evaluation methodologies in automatic question generation 2013–2018. In: Proceedings of the 11th International Conference on Natural Language Generation, pp. 307–317. ACL, Tilburg University, The Netherlands, November 2018. https://doi.org/10.18653/v1/W18-6537. https://aclanthology.org/W18-6537
2. IFIP Advances in Information and Communication Technology;P Azevedo,2020
3. Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, Ann Arbor, Michigan, pp. 65–72. ACL, June 2005. https://www.aclweb.org/anthology/W05-0909
4. Bao, H., et al.: UniLMv2: pseudo-masked language models for unified language model pre-training. In: International Conference on Machine Learning, pp. 642–652. PMLR (2020)
5. Carmo, D., Piau, M., Campiotti, I., Nogueira, R., Lotufo, R.: PTT5: pretraining and validating the T5 model on Brazilian Portuguese data. arXiv preprint arXiv:2008.09144 (2020)