1. Carlini, N., et al.: Extracting training data from large language models. arXiv preprint arXiv:2012.07805 (2020)
2. SIVEP-Gripe (2020). http://plataforma.saude.gov.br/coronavirus/dados-abertos/. In Ministry of Health. SIVEP-Gripe public dataset, (Accessed 10 May 2020; in Portuguese)
3. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 1–12 (2017)
4. Departement of Commerce, National Institute of Standards and Technology. Differential private synthetic data challenge (2019). https://www.challenge.gov/challenge/differential-privacy-synthetic-data-challenge/. Accessed 19 Feb 2021
5. Olivier, T.T.: Anonymisation and synthetic data: towards trustworthy data (2019). https://theodi.org/article/anonymisation-and-synthetic-data-towards-trustworthy-data/. Accessed 19 Feb 2021