1. Adlam, B., Pennington, J.: Understanding double descent requires a fine-grained bias-variance decomposition. Adv. Neural Inf. Process. Syst. 33, 11022–11032 (2020)
2. Arora, S., Du, S., Hu, W., Li, Z., Wang, R.: Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. In: International Conference on Machine Learning, pp. 322–332. PMLR (2019)
3. Bahri, Y., Dyer, E., Kaplan, J., Lee, J., Sharma, U.: Explaining neural scaling laws. arXiv preprint arXiv:2102.06701 (2021)
4. Belkin, M., Hsu, D., Ma, S., Mandal, S.: Reconciling modern machine-learning practice and the classical bias-variance trade-off. Proc. Natl. Acad. Sci. 116(32), 15849–15854 (2019)
5. Butora, J., Yousfi, Y., Fridrich, J.: How to pretrain for steganalysis. In: Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security, pp. 143–148. IH &MMSec 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3437880.3460395