1. Berant, J., Srikumar, V., Chen, P.C., et al.: Modeling biological processes for reading comprehension. In: EMNLP (2014)
2. Bosselut, A., Levy, O., Holtzman, A., et al.: Simulating action dynamics with neural process networks. In: ICLR (2018)
3. Dalvi, B.B., Huang, L., Tandon, N., et al.: Tracking state changes in procedural text: a challenge dataset and models for process paragraph comprehension. In: NAACL (2018)
4. Das, R., Munkhdalai, T., Yuan, X., et al.: Building dynamic knowledge graphs from text using machine reading comprehension.
arXiv:1810.05682
(2018)
5. Devlin, J., Chang, M.W., Lee, K., et al.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)