1. Anand, A., Racah, E., Ozair, S., Bengio, Y., Côté, M.-A., Hjelm, R.D.: Unsupervised state representation learning in atari. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019 (NeurIPS) (2019)
2. Anthwal, S., Ganotra, D.: An overview of optical flow-based approaches for motion segmentation. Imaging Sci. J. 67(5), 284–294 (2019)
3. Bai, S., Geng, Z., Savani, Y., Kolter, J.Z.: Deep equilibrium optical flow estimation. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
4. Bao, Z., Tokmakov, P., Jabri, A., Wang, Y.-X., Gaidon, A., Hebert, M.: Discovering objects that can move. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2022)
5. Brockman, G., et al.: OpenAI gym. CoRR (2016)