1. Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010). European Language Resources Association (ELRA), Valletta, Malta (2010). http://www.lrec-conf.org/proceedings/lrec2010/pdf/769_Paper.pdf
2. Cambria, E., Li, Y., Xing, F.Z., Poria, S., Kwok, K.: Senticnet 6: ensemble application of symbolic and subsymbolic AI for sentiment analysis. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 105–114 (2020)
3. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. Processing 150 (2009)
4. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of KDD 2004, the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM Press (2004). https://www.microsoft.com/en-us/research/publication/mining-and-summarizing-customer-reviews/
5. Hutto, C., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text (2015)