Publisher
Springer International Publishing
Reference14 articles.
1. İ. Büyükyazıcı, H. Sharma, Approximation properties of two-dimensional q-Bernstein-Chlodowsky-Durrmeyer operators. Numer. Funct. Anal. Optim. 33(2), 1351–1371 (2012)
2. Q.-B. Cai, On
p
,
q
$$\left ( p,q\right ) $$
-analogue of modified Bernstein-Schurer operators for functions one and two variables. J. Appl. Math. Compt. 54(1–2), 1–21 (2017)
3. Z. Finta, Approximation properties of
p
,
q
$$\left ( p,q\right ) $$
-Bernstein type operators. Acta Univ. Sap.-Mathenatica 8(2), 222–232 (2016)
4. E. Gemikonakli, T. Vedi-Dilek, Chlodowsky variant of Bernstein-Schurer operators based an (p, q)-integers. J. Compt. Analy. Appl. 24(4), 717–727 (2018)
5. M.N. Hounkonnou, J.D.B. Kyemba,
ℝ
p
,
q
$$\mathbb {R}\left (p,q\right ) $$
-calculus: differentiation and integration. SUT J. Math. 49(2), 145–167 (2013)