1. C. Böhme, F. Hirosawa, Generalized energy conservation for Klein-Gordon type equations. Osaka J. Math. 49, 297–323 (2012)
2. M. Cicognani, F. Hirosawa, On the Gevrey well-posedness for second order strictly hyperbolic Cauchy problems under the influence of the regularity of the coefficients. Math. Scand. 102, 283–304 (2008)
3. D. Del Santo, T. Kinoshita, M. Reissig, Klein-Gordon type equations with a singular time-dependent potential. Rend. Istit. Mat. Univ. Trieste 39, 141–175 (2007)
4. M.R. Ebert, R.A. Kapp, W.N. Nascimento, M. Reissig, Klein-Gordon type wave equation models with non-effective time-dependent potential, in AMADE 2012, vol. 60, Org. by M.V. Dubatovskaya, S.V. Rogosin (Cambridge Scientific Publishers, Cambridge, 2014), pp. 143–161
5. F. Hirosawa, On the asymptotic behavior of the energy for the wave equations with time depending coefficients. Math. Ann. 339, 819–838 (2007)