DFAMiner: Mining Minimal Separating DFAs from Labelled Samples

Author:

Dell’Erba DanieleORCID,Li YongORCID,Schewe SvenORCID

Abstract

AbstractWe propose , a passive learning tool for learning minimal separating deterministic finite automata (DFA) from a set of labelled samples. Separating automata are an interesting class of automata that occurs generally in regular model checking and has raised interest in foundational questions of parity game solving. We first propose a simple and linear-time algorithm that incrementally constructs a three-valued DFA (3DFA) from a set of labelled samples given in the usual lexicographical order. This 3DFA has accepting and rejecting states as well as don’t-care states, so that it can exactly recognise the labelled examples. We then apply our tool to mining a minimal separating DFA for the labelled samples by minimising the constructed automata via a reduction to SAT solving. Empirical evaluation shows that our tool outperforms current state-of-the-art tools significantly on standard benchmarks for learning minimal separating DFAs from samples. Progress in the efficient construction of separating DFAs can also lead to finding the lower bound of parity game solving, where we show that can create optimal separating automata for simple languages with up to 7 colours. Future improvements might offer inroads to better data structures.

Publisher

Springer Nature Switzerland

Reference36 articles.

1. Alquezar, R., Sanfeliu, A.: Incremental grammatical inference from positive and negative data using unbiased finite state automata. In: Shape, Structure and Pattern Recognition, Proc. Int. Workshop on Structural and Syntactic Pattern Recognition, SSPR, vol.94, pp. 291–300 (1995)

2. Angluin, D.: Negative results for equivalence queries. Mach. Learn. 5, 121–150 (1990). https://doi.org/10.1007/BF00116034

3. Avellaneda, F., Petrenko, A.: Learning minimal DFA: taking inspiration from RPNI to improve SAT approach. In: Ölveczky, P.C., Salaün, G. (eds.) Software Engineering and Formal Methods - 17th International Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019, Proceedings, LNCS, vol. 11724, pp. 243–256. Springer (2019). https://doi.org/10.1007/978-3-030-30446-1_13

4. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T., Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions. Department of Computer Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)

5. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972). https://doi.org/10.1109/TC.1972.5009015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3