1. Alquezar, R., Sanfeliu, A.: Incremental grammatical inference from positive and negative data using unbiased finite state automata. In: Shape, Structure and Pattern Recognition, Proc. Int. Workshop on Structural and Syntactic Pattern Recognition, SSPR, vol.94, pp. 291–300 (1995)
2. Angluin, D.: Negative results for equivalence queries. Mach. Learn. 5, 121–150 (1990). https://doi.org/10.1007/BF00116034
3. Avellaneda, F., Petrenko, A.: Learning minimal DFA: taking inspiration from RPNI to improve SAT approach. In: Ölveczky, P.C., Salaün, G. (eds.) Software Engineering and Formal Methods - 17th International Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019, Proceedings, LNCS, vol. 11724, pp. 243–256. Springer (2019). https://doi.org/10.1007/978-3-030-30446-1_13
4. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In: Balyo, T., Froleyks, N., Heule, M., Iser, M., Järvisalo, M., Suda, M. (eds.) Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions. Department of Computer Science Report Series B, vol. B-2020-1, pp. 51–53. University of Helsinki (2020)
5. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972). https://doi.org/10.1109/TC.1972.5009015