Publisher
Springer International Publishing
Reference43 articles.
1. Abayomi-Alli, O., Misra, S., Abayomi-Alli, A., & Odusami, M. (2019). A review of soft techniques for SMS spam classification: Methods, approaches and applications. Engineering Applications of Artificial Intelligence, 1(86), 197–212.
2. Asghar, M. Z., Ullah, A., Ahmad, S., & Khan, A. (2020). Opinion spam detection framework using hybrid classification scheme. Soft Computing, 24(5), 3475–3498.
3. Bahassine, S., Madani, A., Al-Sarem, M., & Kissi, M. (2020). Feature selection using an improved Chi-square for Arabic text classification. Journal of King Saud University-Computer and Information Sciences, 32(2), 225–231.
4. Barushka, A., & Hajek, P. (2020). Spam detection on social networks using cost-sensitive feature selection and ensemble-based regularized deep neural networks. Neural Computing and Applications, 32(9), 4239–4257.
5. F. Benevenuto, G. M., Rodriques, T., & Almeida, V. (2010). Detecting spammers on Twitter. In: Proceedings of the 7th Annual Collaboration Electronic Messaging, Anti-Abuse and Spam Conference.