Empirical Analysis of Gestural Sonic Objects Combining Qualitative and Quantitative Methods

Author:

Visi Federico,Schramm Rodrigo,Frödin Kerstin,Unander-Scharin Åsa,Östersjö Stefan

Abstract

AbstractIn this chapter, we describe a series of studies related to our research on using gestural sonic objects in music analysis. These include developing a method for annotating the qualities of gestural sonic objects on multimodal recordings; ranking which features in a multimodal dataset are good predictors of basic qualities of gestural sonic objects using the Random Forests algorithm; and a supervised learning method for automated spotting designed to assist human annotators. The subject of our analyses is a performance of Fragmente2, a choreomusical composition based on the Japanese composer Makoto Shinohara’s solo piece for tenor recorder Fragmente (1968). To obtain the dataset, we carried out a multimodal recording of a full performance of the piece and obtained synchronised audio, video, motion, and electromyogram (EMG) data describing the body movements of the performers. We then added annotations on gestural sonic objects through dedicated qualitative analysis sessions. The task of annotating gestural sonic objects on the recordings of this performance has led to a meticulous examination of related theoretical concepts to establish a method applicable beyond this case study. This process of gestural sonic object annotation—like other qualitative approaches involving manual labelling of data—has proven to be very time-consuming. This motivated the exploration of data-driven, automated approaches to assist expert annotators.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3