Forward and Backward Constrained Bisimulations for Quantum Circuits

Author:

Jiménez-Pastor A.ORCID,Larsen K. G.ORCID,Tribastone M.ORCID,Tschaikowski M.ORCID

Abstract

AbstractEfficient methods for the simulation of quantum circuits on classic computers are crucial for their analysis due to the exponential growth of the problem size with the number of qubits. Here we study lumping methods based on bisimulation, an established class of techniques that has been proven successful for (classic) stochastic and deterministic systems such as Markov chains and ordinary differential equations. Forward constrained bisimulation yields a lower-dimensional model which exactly preserves quantum measurements projected on a linear subspace of interest. Backward constrained bisimulation gives a reduction that is valid on a subspace containing the circuit input, from which the circuit result can be fully recovered. We provide an algorithm to compute the constraint bisimulations yielding coarsest reductions in both cases, using a duality result relating the two notions. As applications, we provide theoretical bounds on the size of the reduced state space for well-known quantum algorithms for search, optimization, and factorization. Using a prototype implementation, we report significant reductions on a set of benchmarks. Furthermore, we show that constraint bisimulation complements state-of-the-art methods for the simulation of quantum circuits based on decision diagrams.

Publisher

Springer Nature Switzerland

Reference59 articles.

1. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Physical Review A 70(5), 052328 (2004)

2. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. In: 45th IEEE Symposium on Foundations of Computer Science. pp. 42–51 (2004)

3. Amy, M.: Towards large-scale functional verification of universal quantum circuits. In: Selinger, P., Chiribella, G. (eds.) QPL. vol. 287, pp. 1–21 (2018)

4. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. Advances in Design and Control, SIAM (2005)

5. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: Complete axiomatization for the bisimilarity distance on markov chains. In: Desharnais, J., Jagadeesan, R. (eds.) CONCUR. LIPIcs, vol. 59, pp. 21:1–21:14 (2016)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Equivalence Checking of Quantum Circuits by Model Counting;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3