Advances in Low-Temperature Thermal Remediation

Author:

Munholland Jonah,Rosso Derek,Randhawa Davinder,Divine Craig,Pennington Andy

Abstract

AbstractRemediation through traditional high-temperature thermal techniques (over 100 °C) are designed to remove contaminants like petroleum hydrocarbons via enhanced mobilization and volatilization. However, remedies of this nature can require significant infrastructure, capital, operational and maintenance costs, along with high energy demands and carbon footprints. Conversely, low-temperature thermal approaches (in the mesophilic range of ~15–40 °C) are an inexpensive and more sustainable method that can enhance the physical, biological, and chemical processes to remove contaminants. Heat transfer properties of subsurface sediments and other geological materials do not vary considerably and are relatively independent of grain size, unlike hydraulic properties that can vary several orders of magnitude within a site and often limit the pace of remediation of many in-situ technologies. Therefore, low-temperature thermal remediation is a promising alternative that can remediate contaminant mass present in both high- and low-permeability settings, including fractured rock. Emergence of risk-based non-aqueous phase liquid management approaches and sustainable best management practices further offer a platform for low-temperature thermal remedies to advance petroleum hydrocarbon remediation with lower capital and operational costs. Case studies demonstrating this approach along with preliminary sustainability comparisons of the associated reduced energy use and carbon footprint are described in this chapter.

Publisher

Springer International Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3