Author:
Aryal Chudamani,Chali Yllias
Publisher
Springer International Publishing
Reference7 articles.
1. Ganesan, K.: Rouge 2.0: updated and improved measures for evaluation of summarization tasks (2015)
2. Lin, J., Sun, X., Ma, S., Su, Q.: Global encoding for abstractive summarization. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 163–169. Association for Computational Linguistics (2018).
http://aclweb.org/anthology/P18-2027
3. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421. Association for Computational Linguistics (2015).
https://doi.org/10.18653/v1/D15-1166
,
http://aclweb.org/anthology/D15-1166
4. Nema, P., Khapra, M.M., Laha, A., Ravindran, B.: Diversity driven attention model for query-based abstractive summarization. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1063–1072. Association for Computational Linguistics (2017).
https://doi.org/10.18653/v1/P17-1098
,
http://aclweb.org/anthology/P17-1098
5. Szegedy, C., et al.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1–9, June 2015.
https://doi.org/10.1109/CVPR.2015.7298594
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献