Author:
Bartzos Evangelos,Emiris Ioannis Z.,Tzamos Charalambos
Publisher
Springer International Publishing
Reference27 articles.
1. Baglivo, J., Graver, J.: Incidence and Symmetry in Design and Architecture. No. 7 in Cambridge Urban and Architectural Studies, Cambridge University Press (1983)
2. Bartzos, E., Emiris, I., Legerský, J., Tsigaridas, E.: On the maximal number of real embeddings of minimally rigid graphs in $$\mathbb{R}^2$$, $$\mathbb{R}^3$$ and $$S^2$$. J. Symbol. Comput. 102, 189–208 (2021). https://doi.org/10.1016/j.jsc.2019.10.015
3. Bartzos, E., Emiris, I., Schicho, J.: On the multihomogeneous Bézout bound on the number of embeddings of minimally rigid graphs. J. Appl. Algebra Eng. Commun. Comput. 31 (2020). https://doi.org/10.1007/s00200-020-00447-7
4. Bartzos, E., Emiris, I., Vidunas, R.: New upper bounds for the number of embeddings of minimally rigid graphs. arXiv:2010.10578 [math.CO] (2020)
5. Bernstein, D., Farnsworth, C., Rodriguez, J.: The algebraic matroid of the finite unit norm tight frame (FUNTF) variety. J. Pure Appl. Algebra 224(8) (2020). https://doi.org/10.1016/j.jpaa.2020.106351
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Computing Circuit Polynomials in the Algebraic Rigidity Matroid;SIAM Journal on Applied Algebra and Geometry;2023-05-23
2. An asymptotic upper bound for graph embeddings;Discrete Applied Mathematics;2023-03
3. Bounding the Number of Roots of Multi-Homogeneous Systems;Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation;2022-07-04
4. New Upper Bounds for the Number of Embeddings of Minimally Rigid Graphs;Discrete & Computational Geometry;2022-03-19