Cross-Subject Emotion Recognition Using Deep Adaptation Networks
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-04221-9_36
Reference21 articles.
1. Chai, X., et al.: A fast, efficient domain adaptation technique for cross-domain electroencephalography (EEG)-based emotion recognition. Sensors 17(5), 1014 (2017)
2. Chai, X., Wang, Q., Zhao, Y., Liu, X., Bai, O., Li, Y.: Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition. Comput. Biol. Med. 79, 205–214 (2016)
3. Chai, X., Wang, Q., Zhao, Y., Liu, X., Liu, D., Bai, O.: Multi-subject subspace alignment for non-stationary EEG-based emotion recognition. Technol. Health Care 26, 1–9 (2018)
4. Daniela, S., Maren, G., Thomas, F., Stefan, K.: Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44(2), 293–304 (2007)
5. Duan, R., Zhu, J., Lu, B.: Differential entropy feature for EEG-based emotion classification. In: International IEEE/EMBS Conference on Neural Engineering, pp. 81–84. IEEE Press, San Diego (2013)
Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SFT-SGAT: A semi-supervised fine-tuning self-supervised graph attention network for emotion recognition and consciousness detection;Neural Networks;2024-12
2. Toward cross-subject and cross-session generalization in EEG-based emotion recognition: Systematic review, taxonomy, and methods;Neurocomputing;2024-11
3. Emotion recognition using hierarchical spatial–temporal learning transformer from regional to global brain;Neural Networks;2024-11
4. A novel multi-source contrastive learning approach for robust cross-subject emotion recognition in EEG data;Biomedical Signal Processing and Control;2024-11
5. Research Progress of EEG-Based Emotion Recognition: A Survey;ACM Computing Surveys;2024-07-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3