1. ESIMD Implementation of Deep Learning Sparse Matrix Kernels. https://github.com/zubair23517/dlspm-esimd. Accessed 20 Mar 2024
2. Anderson, E., et al.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, 3rd edn (1999)
3. Bharadwaj, V., Buluc, A., Demmel, J.: Distributed-memory sparse kernels for machine learning. In: 2022 IEEE IPDPS, pp. 47–58. IEEE Computer Society, Los Alamitos (2022). https://doi.org/10.1109/IPDPS53621.2022.00014
4. Gale, T., Elsen, E., Hooker, S.: The state of sparsity in deep neural networks. arXiv preprint arXiv:1902.09574 (2019)
5. Gale, T., Narayanan, D., Young, C., Zaharia, M.: Megablocks: efficient sparse training with mixture-of-experts (2022)