1. Arya, V., et al.: One explanation does not fit all: a toolkit and taxonomy of AI explainability techniques. arXiv:1909.03012 [cs, stat] (2019)
2. Asuncion, A., Newman, D.: UCI machine learning repository (2007). https://archive.ics.uci.edu/ml/index.php
3. Baleis, J., Keller, B., Starke, C., Marcinkowski, F.: Cognitive and emotional response to fairness in AI - a systematic review (2019). https://www.semanticscholar.org/paper/Implications-of-AI-(un-)fairness-in-higher-the-of-Marcinkowski-Kieslich/231929b1086badcbd149debb0abefc84cdb85665
4. Barocas, S., Selbst, A.D., Raghavan, M.: The hidden assumptions behind counterfactual explanations and principal reasons. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* 2020, pp. 80–89 (2020)
5. Begley, T., Schwedes, T., Frye, C., Feige, I.: Explainability for fair machine learning. CoRR abs/2010.07389 (2020). https://arxiv.org/abs/2010.07389