Towards Explainability for AI Fairness

Author:

Zhou JianlongORCID,Chen Fang,Holzinger AndreasORCID

Abstract

AbstractAI explainability is becoming indispensable to allow users to gain insights into the AI system’s decision-making process. Meanwhile, fairness is another rising concern that algorithmic predictions may be misaligned to the designer’s intent or social expectations such as discrimination to specific groups. In this work, we provide a state-of-the-art overview on the relations between explanation and AI fairness and especially the roles of explanation on human’s fairness judgement. The investigations demonstrate that fair decision making requires extensive contextual understanding, and AI explanations help identify potential variables that are driving the unfair outcomes. It is found that different types of AI explanations affect human’s fairness judgements differently. Some properties of features and social science theories need to be considered in making senses of fairness with explanations. Different challenges are identified to make responsible AI for trustworthy decision making from the perspective of explainability and fairness.

Publisher

Springer International Publishing

Reference45 articles.

1. Arya, V., et al.: One explanation does not fit all: a toolkit and taxonomy of AI explainability techniques. arXiv:1909.03012 [cs, stat] (2019)

2. Asuncion, A., Newman, D.: UCI machine learning repository (2007). https://archive.ics.uci.edu/ml/index.php

3. Baleis, J., Keller, B., Starke, C., Marcinkowski, F.: Cognitive and emotional response to fairness in AI - a systematic review (2019). https://www.semanticscholar.org/paper/Implications-of-AI-(un-)fairness-in-higher-the-of-Marcinkowski-Kieslich/231929b1086badcbd149debb0abefc84cdb85665

4. Barocas, S., Selbst, A.D., Raghavan, M.: The hidden assumptions behind counterfactual explanations and principal reasons. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, FAT* 2020, pp. 80–89 (2020)

5. Begley, T., Schwedes, T., Frye, C., Feige, I.: Explainability for fair machine learning. CoRR abs/2010.07389 (2020). https://arxiv.org/abs/2010.07389

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3