A Rate-Distortion Framework for Explaining Black-Box Model Decisions

Author:

Kolek Stefan,Nguyen Duc Anh,Levie Ron,Bruna Joan,Kutyniok Gitta

Abstract

AbstractWe present theRate-Distortion Explanation(RDE) framework, a mathematically well-founded method for explaining black-box model decisions. The framework is based on perturbations of the target input signal and applies to any differentiable pre-trained model such as neural networks. Our experiments demonstrate the framework’s adaptability to diverse data modalities, particularly images, audio, and physical simulations of urban environments.

Publisher

Springer International Publishing

Reference32 articles.

1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

2. Chang, C., Creager, E., Goldenberg, A., Duvenaud, D.: Explaining image classifiers by counterfactual generation. In: Proceedings of the 7th International Conference on Learning Representations, ICLR (2019)

3. Dabkowski, P., Gal, Y.: Real time image saliency for black box classifiers. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NeurIPS, pp. 6970–6979 (2017)

4. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 248–255 (2009)

5. DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Limitations of Deep Learning for Inverse Problems on Digital Hardware;IEEE Transactions on Information Theory;2023-12

2. Interpretable by Design: Learning Predictors by Composing Interpretable Queries;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-06-01

3. This looks More Like that: Enhancing Self-Explaining Models by Prototypical Relevance Propagation;Pattern Recognition;2023-04

4. RELAX: Representation Learning Explainability;International Journal of Computer Vision;2023-03-11

5. Explainable AI Methods - A Brief Overview;xxAI - Beyond Explainable AI;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3