DataStates: Towards Lightweight Data Models for Deep Learning

Author:

Nicolae Bogdan

Publisher

Springer International Publishing

Reference35 articles.

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/

2. Wilkinson, M.D., et al.: The fair guiding principles for scientific data management and stewardship. Sci. Data 3(160018), 1–9 (2016)

3. Balaprakash, P., et al.: Scalable reinforcement-learning-based neural architecture search for cancer deep learning research. In: The 2019 International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2019, pp. 37:1–37:33 (2019)

4. Bautista-Gomez, L., Tsuboi, S., Komatitsch, D., Cappello, F., Maruyama, N., Matsuoka, S.: FTI: High performance fault tolerance interface for hybrid systems. In: The 2011 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2011, Seattle, USA, pp. 32:1–32:32 (2011)

5. Bernard, J.: Mercurial-revision control approximated. Linux J. 2011, 212 (2011)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Building the I (Interoperability) of FAIR for Performance Reproducibility of Large-Scale Composable Workflows in RECUP;2023 IEEE 19th International Conference on e-Science (e-Science);2023-10-09

2. Scalable Incremental Checkpointing using GPU-Accelerated De-Duplication;Proceedings of the 52nd International Conference on Parallel Processing;2023-08-07

3. Towards Efficient Cache Allocation for High-Frequency Checkpointing;2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC);2022-12

4. Novel Proposals for FAIR, Automated, Recommendable, and Robust Workflows;2022 IEEE/ACM Workshop on Workflows in Support of Large-Scale Science (WORKS);2022-11

5. Large Scale Caching and Streaming of Training Data for Online Deep Learning;Proceedings of the 12th Workshop on AI and Scientific Computing at Scale using Flexible Computing Infrastructures;2022-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3