Fulfilling the Promises of Lossy Compression for Scientific Applications
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-63393-6_7
Reference53 articles.
1. Hammerling, D.M., Baker, A.H., Pinard, A., Lindstrom, P.: A collaborative effort to improve lossy compression methods for climate data. In: 2019 IEEE/ACM 5th International Workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD-5), pp. 16–22 (2019)
2. Sasaki, N., Sato, K., Endo, T., Matsuoka, S.: Exploration of lossy compression for application-level checkpoint/restart. In: 2015 IEEE International Parallel and Distributed Processing Symposium, pp. 914–922 (2015)
3. Calhoun, J., Cappello, F., Olson, L.N., Snir, M., Gropp, W.D.: Exploring the feasibility of lossy compression for PDE simulations. Int. J. High Perform. Comput. Appl. 33(2), 397–410 (2019)
4. Tao, D., Di, S., Liang, X., Chen, Z., Cappello, F.: Improving performance of iterative methods by lossy check pointing. In: Proceedings of the 27th International Symposium on High-Performance Parallel and Distributed Computing, HPDC 2018, pp. 52–65, New York, NY, USA. Association for Computing Machinery (2018)
5. Chen, Z., Son, S.W., Hendrix, W., Agrawal, A., Liao, W., Choudhary, A.: Numarck: machine learning algorithm for resiliency and checkpointing. In: SC 2014: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 733–744 (2014)
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A compression-based memory-efficient optimization for out-of-core GPU stencil computation;The Journal of Supercomputing;2023-02-20
2. Holistic Analytics of Sensor Data from Renewable Energy Sources: A Vision Paper;New Trends in Database and Information Systems;2023
3. Machine Learning Platform for Extreme Scale Computing on Compressed IoT Data;2022 IEEE International Conference on Big Data (Big Data);2022-12-17
4. Understanding Impact of Lossy Compression on Derivative-related Metrics in Scientific Datasets;2022 IEEE/ACM 8th International Workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD);2022-11
5. Analyzing the Impact of Lossy Data Reduction on Volume Rendering of Cosmology Data;2022 IEEE/ACM 8th International Workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD);2022-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3