Publisher
Springer Nature Switzerland
Reference26 articles.
1. A. Altabaa, B. Yongacoglu, S. Yüksel, Decentralized multi-agent reinforcement learning for continuous-space stochastic games. Preprint. arXiv:2303.13539 (2023 American Control Conference) (2023)
2. G. Arslan, S. Yüksel, Decentralized Q-learning for stochastic teams and games. IEEE Trans. Autom. Control 62, 1545–1558 (2017)
3. W.L. Baker, Learning via stochastic approximation in function space, PhD Dissertation, Harvard University, Cambridge, MA, 1997
4. D.P. Bertsekas, J.N. Tsitsiklis, Neuro-Dynamic Programming (Athena Scientific, 1996)
5. V.S. Borkar, S.P. Meyn, The ODE method for convergence of stochastic approximation and reinforcement learning. SIAM J. Control Optim. 38, 447–469 (2000)