1. Agarwal, D., Bachan, P., et al.: Machine learning approach for the classification of wheat grains. Smart Agric. Technol. 3, 100136 (2023)
2. Ali, A., et al.: Machine learning approach for the classification of corn seed using hybrid features. Int. J. Food Prop. 23(1), 1110–1124 (2020)
3. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Special Lect. IE 2(1), 1–18 (2015)
4. Arthey, T.: Challenges and perspectives in global rapeseed production (2020). http://www.agribenchmark.org/cash-crop/publicationsand-projects0/reports/challenges-and-perspectives-in-global-rapeseedproduction.html
5. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pp. 37–49. JMLR Workshop and Conference Proceedings (2012)